This question illustrates the power of this semantic web technology :
What are the most significant GO terms associated to Paget disease according to UniProt and GeneID annotations using Affymetrix annotations as a crosstable ?
select distinct b1, u1, g1
from
{<http://bio2rdf.org/omim:602080>} <http://bio2rdf.org/bio2rdf#xOMIM> {b},
{b} rdfs:label {b1},
{b} <http://bio2rdf.org/bio2rdf#xOMIM> {c},
{d} <http://bio2rdf.org/affymetrix#xOMIM> {c},
{d} <http://bio2rdf.org/affymetrix#xSwissProt> {u},
{u} rdfs:label {u1},
{u} <http://bio2rdf.org/uniprot#xGO> {g},
{g} rdfs:label {g1}
union
select distinct b1, u1, g1
from
{<http://bio2rdf.org/omim:602080>} <http://bio2rdf.org/bio2rdf#xOMIM> {b},
{b} rdfs:label {b1},
{b} <http://bio2rdf.org/bio2rdf#xOMIM> {c},
{d} <http://bio2rdf.org/affymetrix#xOMIM> {c},
{d} <http://bio2rdf.org/affymetrix#xEntrez_Gene> {u},
{u} rdfs:label {u1},
{u} <http://bio2rdf.org/bio2rdf#xGO> {g},
{g} rdfs:label {g1}
Here is the where to submit it (click on SeRQL-S menu option)
Export result in tabulated format and analyse it with your favorite spreadsheet's pivot table tool.
Possibilities are limitless. Enjoy.
No comments:
Post a Comment